70 research outputs found

    Generalized Supersymmetric Perturbation Theory

    Full text link
    Using the basic ingredient of supersymmetry, we develop a simple alternative approach to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wave functions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.Comment: 13 pages article in LaTEX (uses standard article.sty). No Figures. Sent to Ann. Physics (2004

    Wilson loops in the adjoint representation and multiple vacua in two-dimensional Yang-Mills theory

    Get PDF
    QCD2QCD_2 with fermions in the adjoint representation is invariant under SU(N)/ZNSU(N)/Z_N and thereby is endowed with a non-trivial vacuum structure (k-sectors). The static potential between adjoint charges, in the limit of infinite mass, can be therefore obtained by computing Wilson loops in the pure Yang-Mills theory with the same non-trivial structure. When the (Euclidean) space-time is compactified on a sphere S2S^2, Wilson loops can be exactly expressed in terms of an infinite series of topological excitations (instantons). The presence of k-sectors modifies the energy spectrum of the theory and its instanton content. For the exact solution, in the limit in which the sphere is decompactified, a k-sector can be mimicked by the presence of k-fundamental charges at \infty, according to a Witten's suggestion. However this property neither holds before decompactification nor for the genuine perturbative solution which corresponds to the zero-instanton contribution on S2S^2.Comment: RevTeX, 46 pages, 1 eps-figur

    Phase Space Reduction and Vortex Statistics: An Anyon Quantization Ambiguity

    Full text link
    We examine the quantization of the motion of two charged vortices in a Ginzburg--Landau theory for the fractional quantum Hall effect recently proposed by the first two authors. The system has two second-class constraints which can be implemented either in the reduced phase space or Dirac-Gupta-Bleuler formalism. Using the intrinsic formulation of statistics, we show that these two ways of implementing the constraints are inequivalent unless the vortices are quantized with conventional statistics; either fermionic or bosonic.Comment: 14 pages, PHYZZ

    The stability of vacua in two-dimensional gauge theory

    Get PDF
    We discuss the stability of vacua in two-dimensional gauge theory for any simple, simply connected gauge group. Making use of the representation of a vacuum in terms of a Wilson line at infinity, we determine which vacua are stable against pair production of heavy matter in the adjoint of the gauge group. By calculating correlators of Wilson loops, we reduce the problem to a problem in representation theory of Lie groups, that we solve in full generality.Comment: 12 pages, 1 figur

    Bound - states for truncated Coulomb potentials

    Full text link
    The pseudoperturbative shifted - ll expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.Comment: TEX file, 22 pages. To appear in J. Phys. A: Math. & Ge

    Operator Algebra in Chern-Simons Theory on a Torus

    Get PDF
    We consider Chern-Simons gauge theory on a torus with both nonrelativistic and relativistic matter. It is shown that the Hamiltonian and two total momenta commute among themselves only in the physical Hilbert space. We also discuss relations among degenerate physical states, degenerate vacua, and the existence of multicomponent Schrodinger wavefunctions.Comment: 12 pages, TPI-Minn-92/41-T, UMN-TH-1105/9

    Ordered spectral statistics in 1D disordered supersymmetric quantum mechanics and Sinai diffusion with dilute absorbers

    Full text link
    Some results on the ordered statistics of eigenvalues for one-dimensional random Schr\"odinger Hamiltonians are reviewed. In the case of supersymmetric quantum mechanics with disorder, the existence of low energy delocalized states induces eigenvalue correlations and makes the ordered statistics problem nontrivial. The resulting distributions are used to analyze the problem of classical diffusion in a random force field (Sinai problem) in the presence of weakly concentrated absorbers. It is shown that the slowly decaying averaged return probability of the Sinai problem, \mean{P(x,t|x,0)}\sim \ln^{-2}t, is converted into a power law decay, \mean{P(x,t|x,0)}\sim t^{-\sqrt{2\rho/g}}, where gg is the strength of the random force field and ρ\rho the density of absorbers.Comment: 10 pages ; LaTeX ; 4 pdf figures ; Proceedings of the meeting "Fundations and Applications of non-equilibrium statistical mechanics", Nordita, Stockholm, october 2011 ; v2: appendix added ; v3: figure 2.left adde

    When is working memory important for arithmetic?: the impact of strategy and age

    Get PDF
    Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9-11 years, 12-14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition

    Semiclassical treatment of logarithmic perturbation theory

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the nonrelativistic bound states problem is developed. Based upon \hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions for the one-dimensional anharmonic oscillator is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and exited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the harmonic oscillator perturbed by λx6\lambda x^{6} are considered.Comment: 6 pages, LATEX 2.09 using IOP style
    corecore